Eine verallgemeinerte Higman-Gruppe

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of the Cartan- Brauer-hua Theorem

2. G. Higman, On finite groups of exponent five, Proc. Cambridge Philos. Soc. 52 (1956), 381-390. 3. A. I. Kostrikin, On Burnside's problem, Dokl. Akad. Nauk SSSR 119 (1958), 1081-1084. (Russian) 4. M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. École Norm. Sup. (3) 71 (1954), 101-190. 5. H. Zassenhaus, Ein Verfahren, jeder endlichen p-Gruppe eine Lie-Ring mit der Charakteris...

متن کامل

On the Size of Higman-Haines Sets

In fact, this statement is a corollary to a more general theorem on well-partiallyordered sets. Here a partially ordered set is called well-partially-ordered, if every non-empty subset has at least one, but no more than a finite number of minimal elements (finite basis property). For instance, the set A∗, where A is a finite alphabet, under the scattered subword relation ≤, i.e., v ≤ w if and o...

متن کامل

The Size of Higman-Haines Sets

We show that for the family of Church-Rosser languages the Higman-Haines sets, which are the sets of all scattered subwords of a given language and the sets of all words that contain some word of a given language as a scattered subword, cannot be effectively constructed, although these both sets are regular for any language. This nicely contrasts the result on the effectiveness of the Higman-Ha...

متن کامل

The Conjugacy Problem and Higman Embeddings

For every finitely generated recursively presented group G we construct a finitely presented group H containing G such that G is (Frattini) embedded into H and the group H has solvable conjugacy problem if and only if G has solvable conjugacy problem. Moreover G and H have the same r.e. Turing degrees of the conjugacy problem. This solves a problem by D. Collins.

متن کامل

A Higman inequality for regular near polygons

The inequality of Higman for generalized quadrangles of order (s, t) with s > 1 states that t ≤ s. We will generalize this by proving that the intersection number ci of a regular near 2d-gon of order (s, t) with s > 1 satisfies the tight bound ci ≤ (s − 1)/(s − 1), and we give properties in case of equality. It is known that hemisystems in generalized quadrangles meeting the Higman bound induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae (Proceedings)

سال: 1982

ISSN: 1385-7258

DOI: 10.1016/s1385-7258(82)80006-1